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On spikes and spots: strongly nonlinear theory
and experimental comparisons

By F. T. SMITH

Mathematics Department, Unversity College, Gower Street,
London WC1FE 6BT, UK

Spikes and spots are discussed mostly for incompressible boundary layers, with the
emphasis towards strong nonlinearity. The distinction between forced and free dis-
turbances then becomes blurred, as spikes and spots reproduce each other. First,
the forced case is concentrated on the start of spikes. The theory used is that of the
two- or three-dimensional interacting boundary layer, capturing nonlinear Tollmien—
Schlichting waves, for example, or following a vortex-wave interaction. Finite-time
breakup produces shortened time and length scales, yielding agreement with com-
putations and experiments on the first spike in transition, with subsequent spot
formation. After the breakup, normal pressure gradients and vortex wind-up become
significant locally. Second, the free case concerns initial-value problems for spots con-
taining a wide band of three-dimensional nonlinear disturbances. The theory points
to successive nonlinear stages starting at the wing tips near the spot trailing edge
but gradually entering the middle as the amplitudes increase downstream. This ef-
fect combined with shortening scales produces a spread angle near 11°; very close to
the experimental observations. The overall spot structure is described briefly, includ-
ing also the leading edge. Viscosity arises later in two ways; for the case mentioned
above with spikes originating near the surface and also through a novel interaction
influencing the global spot.

1. Introduction

This research on spikes, spots and their reproductions is directed toward greater
theoretical understanding of deep transition and, ultimately, turbulent flow and
turbulence modelling if possible. The theoretical understanding, for example, of
scales, should help to guide direct computational simulations, as well as provid-
ing parametrization and comparisons with experiments. Here, for the incompressible
regime mostly, we highlight certain central points of the three main nonlinear the-
ories involved, i.e. (A) vortex/wave interaction theory, (B) pressure-displacement
interactive boundary-layer theory and (C) high-frequency cum Euler-scale theory,
corresponding basically to increasing amplitudes in turn. This is as opposed to pro-
viding a broad review of what is now a vast research area and would require enormous
journal space. Theories (A)-(C) are described within §2 and 3, specifically (B) in
§2, (C) in §3, but with elements of (A) in both sections. We address not only the
slower types of transition but also the bypass types, referred to later on. Moreover,
attention is drawn to nonlinear interactions which completely alter the mean-flow
profiles, and that means the preceding three. Their major assumption is that the
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typical global Reynolds number Re is large, which seems in line with the practical
interest in large Re values.

Concerning forced disturbances first, many kinds of boundary-layer transition are
observed in practice, depending on the disturbance environment, e.g. with surface
roughness or freestream unsteadiness. One extreme path is the ‘fast’ bypass tran-
sition epitomized by pipe-flow transition and by the wake-passing effect, from an
upstream row of rotor blades, on the boundary layers on stator blades in turbines.
The other possible extreme is a ‘slow’ transition path, starting from linear Tollmien—
Schlichting (Ts) instability. This is exemplified by extensions of the classical exper-
iments by Schubauer and Skramstad in the 1940s (see, for example, Stuart 1963)
on tiny unsteady controlled disturbances introduced upstream into a basic planar
laminar boundary layer. The typical progression here is linear two-dimensional de-
cay, then growth, then nonlinear three-dimensional motion. For sufficiently large
(although still small) amplitudes, significant three-dimensional action can appear
downstream with a preferred cross-stream wave number or a sustained vortex-like
pattern of quite long streamwise length scale. Alternatively, there is the classic tran-
sition path of Klebanoff & Tidstrom (1959), Nishioka et al. (1979). There, nearly
planar input disturbances upstream lead on within a relatively short distance to
the formation of strongly three-dimensional streets downstream, in which turbulent
bursts or spots are initiated; later we describe theoretical-experimental comparisons
for this path. In addition, intermittency may occur in any of the preceding stages
experimentally, depending on the disturbance environment. Turbulent flow ensues
some way downstream, but the nominally full turbulent state eventually reached
may be regarded as broadly the same as that reached via the fast type of bypass
transition described earlier.

Section 2 below on spikes, for example in initially forced transition, considers non-
linear theory (B) for nonlinear TS or interacting-boundary-layer (1BL) interactions,
which are controlled by the unsteady 1BL equations. Emphasis is given to the re-
cent findings of nonlinear finite-time breakups (Smith 1988a; Peridier et al. 1991a, b;
Hoyle et al. 1991), detailed comparisons with computations and experiments, and
the repercussions. This breakup refers to a singularity that is encountered in the
IBL system, in general, within a finite scaled time and involves the scaled pressure
gradient and skin friction, among other properties, becoming unbounded locally. A
local change of scales is therefore induced. The repercussions of this are concerned
principally with local sublayer eruption and vortex formation.

Second, concerning free disturbances, the three-dimensional ‘spot’ or travelling
disturbance results from an initial localized disturbance and exhibits downstream
travel, some amplitude growth and spatial spreading of the spot. Three basic types
may be identified, namely laminar, transitional and turbulent spots, depending on
the amplitude and spectra of the initial disturbance. All three are of much inter-
est in terms of fundamental fluid dynamics and applications. Numerous aspects of
turbulent spots have been studied experimentally, with fascinating and somewhat
varied results, for example on the main arrowhead-shaped part of the spot, its tail,
its notional speed, and its spreading rate. See contributions stretching from Em-
mons (1951), Schubauer & Klebanoff (1956), Lighthill (1963), Schlichting (1979),
Falco (1979) to Head & Bandyopadhyay (1981), Perry et al. 1981, Chambers &
Thomas (1983), Smith et al. (1991), Gad-el-Hak et al. (1981), Katz et al. (1990),
Johansson et al. (1987), Henningson & Alfredson (1987) and Robinson (1991). Out-
standing features found experimentally include the following. Much of the dynamics
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in a spot closely resembles that in a fully turbulent boundary layer; a turbulent spot
develops fast, typically from localized disturbances with large initial amplitude; the
subsequent growth and spreading of a fully turbulent spot probably take place in a
domino-like manner, possibly associated with the successive production of hairpin
vortices in the flow near the solid surface; the spanwise growth of the spot greatly
exceeds the growth normal to the surface; and the leading edge and the spanwise side
edges are notably sharp, with interaction between the spot and trailing waves pack-
ets especially near the sides. Several other experimental features are also described
in the above papers. Again, interesting computations have been performed on tran-
sitional/turbulent spots, mostly for channel flows and more recently for boundary
layers. Most are confined to spatially periodic boundary conditions but, for a large
period, they seem to reproduce fairly well some of the major experimental findings.
Examples are in Leonard (1981), Bullister & Orszag (1987), Henningson et al. (1987),
Henningson & Kim (1991), Lundbladh & Johansson (1991), Fasel (1990), Konzel-
mann & Fasel (1991). Much extra physical insight and understanding have still to
be provided, nevertheless. Systematic tracking of the effects of increasing amplitude,
for instance, largely remains to be done, both experimentally and computationally.

Few, if any, systematic theoretical studies had been made either, until recently,
especially on the scales and flow structures necessary for a clear physical under-
standing of the spot’s behaviour. A strongly nonlinear theory is desirable, and the
research below appears to be the only effort in that direction, specifically for spot
evolution, i.e. the initial-value problem. Our prime aim here, combined with the re-
lated works (Doorly & Smith 1992; Smith 1991a, 1992; Smith et al. 1994; see also
Gaster 1968), is to consider recent nonlinear theory and address the experimental
findings above. Much of these findings can be described by the theory, even though
many complex phenomena arise during spot evolution. In practice, there is signifi-
cant dependence on the particular experimental configurations and conditions used,
and there are many nonlinear aspects still to be explained or explored. The Euler
stage (theory C) of Smith et al. (1990), Smith & Burggraf (1985) (and see also Zhuk
& Ryzhov 1982) appears to be the closest, of any rational theory for high Re, to
describing boundary-layer turbulence in a systematic fashion. Support is given in
the above papers and also by the more empirical modelling of Walker (1990) (see
also Smith et al. 1991; Hoyle et al. 1991; Peridier et al. 1991a,b). This Euler stage
corresponds to nonlinear disturbance wavenumbers «, (3, frequencies w, propagation
speeds ¢ and amplitudes (for example, pressure p’, velocity u’) all of O(1), based on
the boundary-layer thickness and local freestream speed, thus representing a wider
range than conventional linear-type Ts disturbances, which have a, 3, w, ¢, |p/|, |u/|
all smaller by an order of magnitude. In consequence, it seems not unreasonable to
tackle the free spot-evolution problem theoretically first by means of the same Euler-
stage nonlinear approach, but as a nonlinear 3D initial-value problem for a localized
input disturbance (rather than a fixed-frequency problem, for example). This is the
concern of much of §3.

Section 3 (a)-(e) tends to split the spot dynamics into two categories, global
(mainly inviscid) and internal (viscous-inviscid) properties, and to concentrate on
the former. Nevertheless, a new long/short-scale global interaction is identified in
§3d, linking the 3D viscous boundary-layer equations and unsteady Euler equations
via Reynolds-stress forces, sufficiently far downstream. Moreover, internal properties,
flow structures and their interactions with the more global dynamics are reconsidered
briefly in § 3 e, having been addressed in more detail in §2. The viscous sublayer, its
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eruptions and the ensuing local vortex formations can become important in practice.
Not least, they introduce shorter length and time scales, and hence even higher fre-
quency and wavenumber content, and they almost certainly play a key part in the
domino process mentioned earlier. The work is aimed at relatively high-amplitude
nonlinear responses, as opposed to gradual transition following linear instability. The
latter transition for spots is considered in Cohen et al’s (1991) interesting, mainly
experimental, study, i.e. with input spectrum corresponding essentially to longer
Ts length and time scales, lower amplitudes and relatively slow propagation (until
breakdown occurs later on), in contrast with the present wider spectrum of faster
Euler scales, high amplitudes and faster propagation, equivalent to a nonlinear by-
pass mechanism. Many issues are left unresolved, and research into some of these
is in progress. The major physical effects investigated in §3 are through nonlinear
interactions between the fluctuations present and the mean flow. Further comments
are provided in § 4, including the inter-relations between spikes and spots and further
questions.

2. IBL transitions and breakup: spikes

The velocities (u,7,w) in Cartesian coordinates (Z,7,z) (streamwise, normal,
spanwise), the pressure p and the time ¢ are assumed to be non-dimensionalized
globally, with respect to (say) airfoil chord and freestream speed. Given that Re is a
large parameter, we address the Navier-Stokes equations but scale the variables here
in the Ts lower-branch fashion (Smith 1979a, b). That is equivalent to the triple-deck
scalings

(u,v,w) = (Re™ Y& \V4y, Re™3/8 \3/4y, Re™1/8 M) 4+ (2.1)
p=Re VN 2p(X,2,T) + -, (2.2)

(Z,5,%,1) = (To + Re /S X751 X, Re™5/% \73/4y 7,
+R€_3/8 )\—5/42’ R6_1/4 )\_3/2T). (23)

The scalings apply in the so-called lower deck, which is a viscous sublayer close to
the surface. The factor A = A(Tp, Zo) is the reduced skin friction of the oncoming
undisturbed O(Re'/?) thick boundary layer, e.g. in Blasius flow A « Zo /2, at the
typical O(1) station T = Zo,Z = Zo. The flow problem comes down to the unsteady
nonlinear 1BL problem:

ou Ov Ow
0 0 0 0 B Op Op 0% (u, w)
<8T+ aX+”a_Y+waZ>( w)_“<a_x’a_z>+ avr 0 (25)
u=v=w=0, atY =0 (no slip), (2.6)
u~Y +AX,Z,T), w—0asY — oo (unknown displacement), (2.7)
°° 32A/<9x ¢, T)dxde .

X, S i . .

p(X,Z,T) / / = o) (interaction law) (2.8)

Here (2.8) applies for subsonic ﬁow. In the 2D supersonic counterpart, (2.8) is re-
placed by Ackeret’s law p = —0A/JX. There are, in addition, finite Re versions of
much interest. The two main alternatives to the nonlinear triple-deck version above

Phil. Trans. R. Soc. Lond. A (1995)
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Figure 1. (a) Finite-time breakup structure (§2) in 2D or 3D: typical velocity profile with the
main Y scale of O(1) and subsidiary scales, while Z is given by (2.14). (b) Computed 2D solutions
for the particle trajectories during subsequent vortex formation and roll-up.

are the Navier-Stokes equations and 1BL and related versions at finite Re. Both re-
quire numerical treatments. In general, the former tends to be hindered more by
grid-resolution difficulties, among others. 1BL and similar methods, which are more
zonal treatments involving sensible interpretations of (2.4)-(2.8) at finite Re, have
been developed only fairly recently for unsteady flows (Smith et al. 1984; Peridier et
al. 1991b). These have connections with interesting methods based on the parabo-
lized Navier-Stokes equations (Bertolotti et al. (1992) and independent work by Dr
M. R. Malik), which have also been developed recently.

Some properties of the viscous-inviscid unsteady nonlinear system (2.4)—(2.8) and
related problems are well known (see, for example, Smith 1979b; Hall & Smith 1984;
Smith & Burggraf 1985). The linearized version, linearized about the original steady
flow u =Y, v=w=p= A =0, compares well with Orr—-Sommerfeld results in two
dimensions. It gives the neutral scaled frequency 2 = (2, ~ 2.30, where 0/0T —
—if2. A supercritical 2D bifurcation is present for 2 > (2, which is equivalent to
o > Zon or a displacement-thickness Reynolds number Res > Res,,, in view of the
A factor, cf. Hall & Smith (1984) in three dimensions. Computations of nonlinear
travelling states for a range of values of {2 greater than 2, have been presented
by Conlisk et al. (1987), since which more have been done. These are connected
at increasing frequency with §3 and with the reversed-flow singularities discussed in
Smith (1988b). Again, there are applications to linear receptivity in Goldstein (1985),
Goldstein & Hultgren (1989), Ruban (1985) and to nonlinear receptivity in Smith
(1987). Even with continued forcing, for example, at almost fixed frequency as with a
vibrating ribbon experiment, however, the time evolution is important especially with
regard to the occurrence of singularities, cf. Smith (1988b) in the fixed-frequency case.
Relatively early numerical results for time-marching are presented by Duck (1985),
Smith (1984), whereas more recent accurate computations are given by Peridier et
al. (1991a,b).

Most recent interest is in the ultimate behaviour of the nonlinear time-marching
regime, where, for finite amplitudes, the unsteady 1BL system (2.4)-(2.8) applies in
full. The principal finding seems to be that localized finite-time breakups can occur
(Smith 1988a): see figure 1. These breakups take the form, in two dimensions,

X — X, =T —T,) + (T, — T)V¢,

Phil. Trans. R. Soc. Lond. A (1995)
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Table 1. Values of the power B at various Re values

B (from computations) B (from theory)

Re  Peridier et al. (1991b) Smith (1988a)

108 —0.252 + 0.016 —0.25
107 —0.253 + 0.035 —0.25
10° —0.263 +0.022 —0.25
10° —0.234 4+ 0.032 -0.25
op —1
a5 ~ (L= T) 7B (E), w— uo(Y) (2.9)

near the breakup position X, and time 7,. Here the local velocity profile uy is
smooth, with uy = ¢ at the inflection point, the local coordinate & is of O(1), and
the phase speed ¢ is of O(1). It is found that the power N = 2, %, %, %,...,1 for
single-valuedness. In moderate breakups, N > 1. Then, in effect, an inviscid Burgers
equation for the pressure function p;(§) describes the local terminal behaviour

plpll = bl(pl - 3529/1) (2~10)

in scaled terms, from substitution into (2.4)—(2.8) and integration with respect to Y.
(2.10) is for the most likely case of N = % and holds provided the integral constraint
(ref2.13) on wuy is satisfied. This yields the appropriate smooth solution

& = —bopy — bsp} (2.11)

implicitly, where by and by are constants having the same sign. (2.11) shows that
the p1(§) solution is single valued as required and monotonic in &. Furthermore,
Ip1| o< |€]1/3 at large |¢]. This asymptote matches with the flow solution further away
from the breakup station X = X and gives specifically the behaviour

p—po o< |X — X |3, as X — X+, (2.12)

where py = p(X;) is a constant. Hence, a singularity in the pressure gradient is
predicted at the breakup time T' = T;. For N = 1, on the other hand, we have severe
breakups, see last reference. Both sorts of breakup provoke increasingly large wall-
shear responses in the local motion. Various previous unsteady IBL computations
appear to support qualitatively the singular description in (2.9)-(2.12). There is
also fair agreement with the Navier-Stokes computations of Fasel (1984), whereas
experimental comparisons are described nearer the end of this section. A significant
point is that the breakup applies to most of the unsteady interactive flows known to
date.

Detailed quantitative comparisons between computations of (2.4)—(2.8) and the
breakup theory of (2.9)-(2.12), for N = 2, are made by Peridier et al. (1991b), show-
ing very good agreement; see also figure 1. Table 1 compares (at various Re values)
the values of the power B implied by the numerical results in Peridier et al. (1991b)
with the value B = —% implied by the theory above. The agreement is felt to be
encouraging. The power here occurs in the behaviour 7, o (Tt — T')® of the scaled
skin friction.

Following the breakup, new physical effects come into play locally as normal pres-
sure gradients become significant on shorter length scales. An appropriate computa-
tional approach, in principle, can then be found in Smith et al. (1984), Smith (1991b).

Phil. Trans. R. Soc. Lond. A (1995)
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Figure 2. Comparisons between theory (Smith & Bowles 1992) and experiment (Nishioka et al.
1979), concerning the nonlinear criterion (2.13) and the first transitional spike. All the cases
(0)—(8) studied are close to the two representative cases (0), (7) for the local experimental
profile shown in (a). In (b), the circles effectively denote theoretical results and the squares
experimental results. Note that the complete range of possible ¢ values is between 0 and 1, and
that the variation with case number in (b) indicates sensitivity with respect to the velocity-profile
measurement.

The new faster stage is discussed by Hoyle et al. (1991) where it is shown that an
extended KdV equation holds for the pressure, subject to matching at large negative
scaled times with the breakup of (2.9)—(2.12). Beyond that, another new stage of
still faster time scales is encountered as a strong local vortex formation takes place
(figure 1 and Bowles et al. 1995). This is felt to be associated with the initiation
and eruption of a vortex in the viscous layer. Intuition would suggest also that this
breakup process, when repeated, may well be connected with the occurrence of in-
termittency in practice. Smith and Bowles (1992) make comparisons, as shown in
figure 2, between the breakup criterion (Smith 1988a) that arises from (2.9)—(2.12),
namely

]{)o[uo(y) —c]7?dY =0, (2.13)

and the experimental measurements of Nishioka et al. (1979) concerning the first
spike in transition. The agreement found is relatively close, especially given that Re
is subcritical in the experiments.

There are many related or follow-on aspects. First, high-frequency theory applied
to (2.4)—(2.8) yields an alternative view of spikes, associated more with still larger
disturbances, as discussed in § 3 e below. In the same regime, Kachanov et al. (1993)
compare 2D nonlinear theory and experiments showing other apparent spikes, finding
good agreement as shown in figure 3; while at suitably reduced amplitudes, upper-
branch features and critical layers tend to arise further downstream of the lower-
branch regime (2.1)—(2.8). Second, there is recent work by Vickers & Smith (1994)
on the breakup of separating flows (see also Savenkov 1993). Next, Hoyle & Smith
(1994) consider the extension of (2.9)-(2.13) to three dimensions, where

Z — Zy~ (Ty — T)%*. (2.14)

gives a crucial spanwise scale when N = 2 in (2.9). Likewise, in three dimensions,
Smith & Walton (1989), Stewart & Smith (1992) and Smith & Bowles (1992) imply
that vortex/wave interactions (theory A in §1) based on (2.4)-(2.8), for example,
can act at low input amplitudes as precursors to the strong-amplitude finite-time
breakup above. The latter two yield good agreement with boundary-layer and chan-
nel flow experiments (figures 4, 5), in addition to that above. Other vortex/wave
interactions are studied in the series by Hall & Smith (1988, 1989, 1990, 1991), with

Phil. Trans. R. Soc. Lond. A (1995)
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Figure 3. A comparison with experimental work in Kachanov et al. (1993), in mostly quasi-2D

transition.

Phil. Trans. R. Soc. Lond. A (1995)


http://rsta.royalsocietypublishing.org/

e

R
\
\\ \\
P

/

\
{

A

P\

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
£\

SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

On spikes and spots 413
90
(viii)
6
S}
= (iv)
- i
, 1.49 3
55 LA §5 tw%q— ](vn)
[
()
Z/mm

Z/mm

Figure 4. A comparison with experimental work, from Smith & Bowles (1992), in the chan-
nel-flow 3D transition of Nishioka et al. (1979). Theoretical results are shown as bars (i)—(viii).

related works by Benney & Chow (1989), Wu (1993), Churilov & Shukhman (1987,
1988), Walton & Smith (1992), Timoshin & Smith (1995), Walton et al. (1994) and
Smith et al. (1993), in various weakly or strongly nonlinear settings with Ts or inflec-
tional disturbances. Hall & Smith (1988, 1989, 1990, 1991), in particular, emphasize
the ability of vortex—wave interactions to provoke strongly nonlinear effects even
for quite tiny 3D input disturbances. Vortex effects are clearly very powerful, both
theoretically and in practice. Finally here, further work, following on directly from
(2.9)-(2.13), is mentioned later.

3. The free evolving spot

The focus shifts now to the evolution of free spots, corresponding to nonlinear
initial-value problems including shorter scales, cf. the forced spots arising in §2. The
main context here concerns the Euler stage for large fully nonlinear disturbances,
where the unsteady nonlinear 3D incompressible Euler equations apply throughout
the boundary layer:

Uy + Ty + W, = 0, (3.1)
Uy + Uly + VUy + WU, = —Dy, (3.2)
Uy + UV, + VUy + WU, = —P,, (3.3)
Wy + WW, + WWy + WW, = —P,. (3.4)

The coordinates, with an origin shift, are scaled on the typical boundary-layer thick-
ness O(Re /%), and similarly for the O(Re™*/?) timescale t. The main boundary
conditions are

(@,7,w, D) — (te, 0,we,0), asy — oo, (3.5)

Phil. Trans. R. Soc. Lond. A (1995)
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Figure 5. A comparison with Stewart & Smith (1992), in the boundary-layer 3D transition
of Klebanoff & Tidstrom (1959). Theoretical predictions are indicated by bars (i)—(v) in (a),
(i)—(iii) in (b), and b, ¢, d (compared with experimental breaking points) in (c).

(ﬂa —’Da waﬁ) - (uB(y)a Oa wB(y)aO)a as x2 + 22 — 00, (36)
7=0aty=0. (3.7)
The conditions (3.5) and (3.6) are to match with the free stream outside the boundary
layer and with the undisturbed boundary-layer profile ug(y) holding sufficiently far
from the initial disturbance, and (3.7) is the tangential-flow constraint at the solid
surface. For the present u, = 1, w, = wp(y) = 0, but compare §3d below. The
profile ug(y) here is supposed to be monotonic, inflection-free, and up(occ) = 1,
ui(0) = Ag > 0. The initial disturbance itself is fully nonlinear in general, so that
(u,v,w,p) is prescribed for all z,y,z at t = 0, consistent with (3.1)-(3.4). The
problem (3.1)-(3.7) is usually a computational one.

The work in Smith et al. (1992, 1994) considers the possible solution properties
of the nonlinear initial-value problem above at large times, and especially far down-
stream of the initial-disturbance position, given guidance from the linearized analysis
of Doorly & Smith (1992). At large times ¢, two major length scales arise in the plan
view (z—z plane): one very far downstream at distances O(t) and the other less far
downstream, at distances O(t'/?). Below we are concerned first with the O(t!/?)
length scale, since significant features are found to arise there first, even though this
zone trails the majority (the O(t) zone, see (d)) of the spot (see figure 6). An order-
of-magnitude argument suggests the perhaps surprising feature that, in the O(t'/?)
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Figure 6. (a) Plan view of the theoretical spot structure in § 3, with symmetry about the Z-axis.
In §3a-c Re™'/? « T « 1, whereas when time ¥ becomes O(1), in §3d,e, coupling occurs be-
tween the global (3DBL) and local (Euler, see (b)) properties as indicated. £, N'L denote linear
and nonlinear regions in turn, the former envisaged as bounding the calm region observed in
experiments, while LE, TE denote the leading and trailing edges respectively. (b) The local 3D
Euler structure a and subsequent sublayer eruptions b, leading to spots within spots: see §2,
§3e.

zone, the large-time solution of the unsteady Euler problem takes on a three-layer
form, analogous with the triple-deck structure. The ‘lowest’ layer has y being small
with

(@,,@,p) ~ [t Ut 32V 2w P,y =t (3.8)
whereas in the ‘middle’ layer

(W,0,7,p) ~ [us(y) + ¢/ Aup, =t Agup(y),0(t™"), ¢t 'P], y=0(1), (3.9)

and in the ‘uppermost’ layer in the outer reaches of the boundary layer

(@,0,W,p) ~ [L+t"w, ¢ oy, ¢ w0, t 7],y = O(t?). (3.10)

Here the unknown surface pressure P(X,Z) and negative displacement AX,Z)
depend on the scaled coordinates (X, Z) defined by

(z,2) =t'*(X,Z) (3.11)

in the present zone. From substitution into (3.1)-(3.7) we are left with solving a
nonlinear similarity inviscid-boundary-layer-like system for the O(t'/?) zone proper-
ties. The theory and allied computations in § 3 a—c below are concerned mostly with
the ‘trailing edge’ of the spot, where the coordinates (X, Z) are typically large and
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positive, between the O(t'/2) and O(t) zones downstream, with the latter then being
discussed in §3d,e. The lowest level of input or evolved amplitude that produces a
significant nonlinear response in the spot trailing edge is considered first.

(a) Amplitude level I

The flow solution at comparatively large distances X > 1 downstream in the edge
layer near Z ~ uX (figure 6) takes the underlying form

P=X**Epy+cc)+-+X LBpa+--, (3.12)

for the pressure, with corresponding expansions for the velocities. The direction
factor y = 87 '/2, while Z — uX = X~ '/?5, and the dominant fluctuating part
(subscript zero) at this stage has E = exp[i(by X2 4+ AX?/3n)], where b; = 3%/2/16,
A= (3/8)12 and n ~ 1. The subscript m refers to the real mean-flow corrections,
and c.c. denotes the complex conjugate. The arrangement of the powers of F is
partly due to the nonlinear effects and partly to the wave-like dependence in E. The
nonlinear interaction is dominated by interplay between the fundamental fluctuations
E*! and the mean-flow correction E°. The strength of this interplay is due physically
to the relative slowness of the mean-flow variations; a similar phenomenon also arises
in §3b.

In the present stage the governing equations of concern (Smith et al. 1994) are
found to be

(o — 1po)” = iAmpo, (3.13)

2 _ 1 ][“ Al (g) dg
—lpol? == f 3.14
|p0| T J_—c (77—(1> ( )

in normalized form, controlling the complex wave part po and the mean part An,
with |pg| tending to zero at large |n|. Here (3.14) stems from a combination of the
outer interaction law for the mean-flow components Ay, p, and the relation p, o
—|po|? obtained from the mean components of the two momentum equations, while
(3.13) represents modulation of the wave amplitudes due to the mean-flow (vortex)
correction. The critical layer and wall layer also present merely play a secondary
role, the former mainly because of the high input amplitude. At lower amplitudes,
(3.13) reduces to Airy’s equation, in line with earlier theory. At O(1) amplitudes
the fast-fluctuation/slow-mean-flow nonlinear mechanism becomes fully active, and
computations of the nonlinear system are necessary, sample solutions being presented
in the last reference.

At relatively high amplitudes a novel structure is found to emerge. When |A,,]|
becomes large, the typical scale A of |n| expands (with [An,| ~ A%/2), and |po| also
grows, like A4, yielding the system

h? +7h = —am, (3.15)
(3R + 7))’ + (3hK + 1)r = 0, (3.16)
1 [* a;,(q)dg

Here py ~ AY4rexpl[ia®/2f + O(1)] and A, ~ A%?ay, with the amplitude r, the
phase f and the mean part a,, all being generally O(1) real functions of the new
O(1) coordinate 7 = A~'n, and h = df/d7n. The increasing variation in phase is
especially noteworthy. A numerical solution is given in the last reference. At these
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amplitudes the mean-flow correction comprises relatively long vortices such that the
mean displacement increment is mostly positive, except outside the spot where it is
negative. The large-A theory points to the next interactive structure at an increased
amplitude level.

(b) Amplitude level IT

Significant changes occur first when the amplitudes increase slightly to the stage
where Z — uX becomes of order unity, corresponding to A above rising to the order
X173 which yields estimates for the new orders involved. The expansions now holding
have Z — uX = 7 being of O(1), and

P=X¥"Epy+cc)d-+ X Y2+ (3.18)

The primary fluctuating part (here the unknown functionAf(ﬁ)), because of the en-
hanced phase variation, is F' = expli(b; X2 + AX7) + X'/2£(7))]. The main new con-
tributions at this level come from extra inertial effects in the momentum balances for
the mean-flow correction, thus preserving the dominance of the long/short interac-
tion between the fundamental fluctuations and the mean flow. The new controlling
equations have the normalized form

o+ 2nf — f = Au, (3.19)

@+ 37 (Bol) + (2 + 3£ F")(Bo) =0, (3.20)
1~ - N 1 [ A" (9 dq

Y 2/:_][ @) dg 3.21

Solutions are presented by Dodia et al. (1995). For sufficiently enhanced amplitudes
II, the influence of the integral contribution dies out, signalling a diminution of the
mean-flow effect produced by the motion near the external stream. Thus, (3.21)
reduces to

= 3An = 1AL = (Pol*)’, (3.22)
representing a balance between the mean-flow momentum near the wall and the
Reynolds-stress effects there due to the amplitude-squared inertia from the main
fluctuations. A new stage arising as the amplitude level continues to increase then
occurs, when the whole of the trailing-edge region becomes affected by nonlinearity,
as the typical Z — X value rises to O(X), corresponding to 7 increasing dramatically
to O(X) in effect. Then the mean-flow correction formally becomes comparable with
the basic mean flow. In consequence, a strongly nonlinear effect is implied at that
level, as investigated below.

(¢) Amplitude level III, affecting the entire trailing-edge

Here the characteristic amplitude level for both the fluctuating and the mean-
flow parts is raised to O(X), in the velocities U, W, with corresponding increases
in V, P, as inferred from the previous level (see also figure 6). The nonlinear in-
teractions present now become strongly nonlinear however, and, effectively, all the
higher harmonic fluctuations also play a significant role. Since Z- and X-variations
are comparable when the whole of the trailing-edge region is considered, we work in
terms of the polars R, 6, where (X, Z) = R(cosf,sinf), and now 6 is O(1) typically,
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with R being large. Hence the flowfield solution has

U:R(Um+Uf)+"', W:R(Wm+Wf)+"', P:Rzpf‘i‘(—ﬁm‘i’Pf)_""',
(3.23)

where U, W are the R- and f-velocities, respectively. In the above equations, the
subscripts m, f refer to the mean and fluctuating parts, respectively, the latter having
zero mean. The total mean flow, e.g. Uy, is unknown now but it varies slowly, being
dependent on Y, 6, whereas the unknown fluctuations, e.g. Uy, also depend on the
rapid variable F' = b(6)R?. Smith et al. (1994) show that a closed nonlinear system
is produced controlling the major unknowns, namely the dominant fluctuations, the
total mean flow, and the phase function b(6).

(d) The spot centre

In the main body of the spot, at larger distances © ~ t downstream, the full Euler
equations (3.1) ff. come back into play, from the following reasoning. Formally, the
scaled distances X, Z, and hence R, then tend to O(t'/?), to make z, z be of order ¢.
It follows that the y-scale that was originally t~!/2 in the lowest layer of (3.8), but
was then enhanced by a factor O(R) in §3 a—c above, rises to O(1). Simultaneously,
the uppermost y-scale behaves as t'/2R~! typically because of the fast £, E or F
variations in § 3 a—c above, and so it also tends to O(1) as R increases to the order ¢/2,
while the y-scale of the middle layer in (3.9) stays O(1). Therefore, the three-layer
structure collapses now into a single structure. Along with this, the characteristic
variation of the fluctuating parts, with respect to x, z, now becomes faster due to the
rapid F' (or E, E) dependence, essentially by a length factor of order R, or ¢~1/2;
derivatives involving F are greater than those not involving F by a factor O(R?).
This implies that the characteristic length scale in x,z falls to O(1) as far as the
fluctuations are concerned. Again, the strong nonlinearity encountered in § 3 ¢ points
to strong nonlinearity persisting as the = O(t) zone is encountered downstream.
For example, the velocity u then becomes O(1), from § 3 a—c. All the above then leads
to the full unsteady 3D Euler system, holding in the centre of the spot, and implying
a large numerical task. That is, however, not the whole story. For, according to §3 ¢,
there is significant interplay between those fast fluctuations and the more slowly
varying total mean flow. So there must be extra length scales in operation, specifically
lengths x, z of O(t) (from reasoning as in the previous paragraph), in addition to the
O(1) length scales above. The extra length scales are associated predominantly with
the equations (slender-flow equations) for the mean flow and must play an equally
important role, linking the main short- and long-scale behaviour in similar fashion
to the links in §3c.

Moreover, as the spot continues even further downstream, to distances x, z of order
Re'? measured from the initial disturbance, i.e. global distances, Z,Zz of O(1), since
(z,%) = Re”/?(z, 2), the two interacting short- and long-length scales above become
O(Re™Y %) and O(1) respectively, in the global coordinates Z,z, with the normal
coordinate staying at O(Reﬁl/ 2). These scalings appear to be physically sensible. A
new feature arises, however, since viscous forces must affect the mean-flow equations
on the z,z ~ 1 scale. Indeed, the 3D boundary-layer equations are implied,

Uy + Ty + W, = 0, (3.24)
Uiy + Uiy + Uiy + Oz = 51 — Pr + Uyy, (3.25)
Wy + Wy + VWy + DDz = 83 — Pz + Wy, (3.26)
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essentially for the unknown mean-flow velocities (a@,v,w)(Z,y,Z2,t), where
t = Re™'/?t denotes the global time. Here p(Z, Z,t) is the prescribed external-stream
pressure, associated with (@, w) — (ue,we)(T, 2,t) say, as y — oo, whereas 31, 5,
are the unknown Reynolds stress terms comprising nonlinear effects from the fluc-
tuating velocity components governed by (3.1)—(3.7). The full interaction between
(3.24)—(3.26) and (3.1)—(3.7) also involves the mean profile 4 = ug in (3.6), which is
now dependent on T, y, Z, t and unknown, as is the corresponding non-zero @ = wg in
general. It is intriguing that, according to the above argument, the flow properties on
those two length scales remain fully interactive, with the viscous 3D boundary-layer
system (3.24)—(3.26) and the inviscid 3D Euler system (3.1)-(3.7) being coupled to-
gether via the Reynolds stresses in (3.25), (3.26) and the profiles in (3.6). See figure 4
of Smith et al. (1994) and figure 6 here, and observe that interference is assumed to
be negligible from the elliptic O(Re /%) zone that was originally the O(¢'/2) zone,
lying behind the spot and surrounding the initial station.

As with other aspects, the present area seems to merit much further research. The
impact of high-amplitude analysis, for example, remains to be studied here. In ad-
dition to the above broader-scale behaviour, however, there are finer-scale responses
to consider, as in the following subsection.

(e) Internal dynamics and viscous effects

The major element missing so far in § 3 is viscosity, which substantially governs the
finer-scale dynamics and the connection with larger scales, apart from the interesting
global-scale effect predicted in (3.24) fI. Although our concern in the majority of §3
is with global features, we also consider the internal features briefly below, more
details and description being given in §2 and in the references cited therein.

An important role is played by the 3D viscous sublayer or sublayers lying (initially)
between the mainly inviscid regions of § 3 a—c and the solid surface. The sublayer is
neglected above, as it is assumed to remain relatively thin; and that seems likely
to stay true for the first stages I, II. At higher amplitudes such as III however, the
sublayer, which initially occupies only a small fraction O(Re"l/ 4) of the complete
boundary layer, is governed by the classical non-interactive unsteady 3D boundary-
layer formulation ((3.24)—(3.26) in effect, without the Reynolds-stress terms) holding
beneath the Euler form of (3.1) ff. Hence, the sublayer is subjected to strong unsteady
pressure gradients, including adverse ones, produced, for instance, by the strongly
nonlinear inviscid behaviour in III. First thoughts would suggest (figure 6) that,
under such prescribed pressure gradients, the sublayer erupts in the sense of its
solution becoming singular within a finite time in the Van Dommelen (1981) fashion,
such that

6p =00, ast—t;—. (3.27)
Here 6, is the usual scaled sublayer displacement thickness, the singular time ¢; is
finite, and (3.27) occurs locally at a particular z station; see the structure involved
in Elliott et al. (1983). The singularity is especially relevant if the inviscid Euler be-
haviour predicted by §3 ¢ or (3.1)—(3.7) becomes extreme in its amplitude variation.
Again, (3.27) is written as if for 2D flow but the 3D case appears predominantly
quasi-2D anyway (Elliott et al. 1983; Cowley et al. 1991). More significantly, the flow
solution next moves into shorter length and time scales until inner-outer interac-
tion takes place between the increasing displacement (effectively é;) and the induced
pressure due to back-influence from the inviscid slip stream outside, as described by
Elliott et al. (1983). At that stage the work of Brown et al. (1988) comes into play,
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implying a further and stronger singularity in the displacement as well as in the local
pressure, and hence yet newer physics enters the reckoning. Recent theoretical and
computational studies of that stage have been made by Cassel et al. (1995), with the
present author extending the work.

Further thought however points to the finite-time breakup of §2 being more likely
to arise in practical as well as theoretical terms, depending on the precise context.
This nonlinear breakup singularity is associated with inner—outer interaction affect-
ing the sublayer and such interaction is always present. The breakup occurs at a time
(to say) earlier than the non-interactive time t; above, since the nonlinear breakup
criterion (2.13) is met earlier. See Cassel et al. (1995). The breakup involves the local
response

|0p/0z| — 00, Ty — 00, ast—ty— (3.28)
in particular (see §2), with the pressure remaining finite but the pressure gradient
and the normalized wall shear stress 7, becoming infinite in anticipation of a change

of scale. The breakup in (3.28) is followed by the entry of new physical effects locally,
as described in §2.

4. Further comments

There is still much to be explained. Following on directly from §3, finite-time
breakups must occur sooner or later, and further work is needed to understand the
impact of these internal eruptive or bursting processes on the larger-scale evolu-
tion addressed in §3, and the generation of faster time and length scales and hence
higher frequency and wavenumber spectral content. There is in particular the issue
of whether or not a clear link can be established between the formation of hairpin
vortices in reality, the observed hierarchy of scales, and the so-called turbulence re-
production cycle (see ‘domino process’ earlier) near the surface (see, for example,
Smith C. R. et al. 1991; Grass et al. 1991). Certainly, viscous-induced eruptions as
in (3.27), (3.28) can also take place in other scales, both larger as in the context of
(3.24)-(3.26) and smaller, cf. the cascade process described by Smith et al. (1990),
which predicts the scales

O(Re™'In Re), (4.1)

O(Re™%/%), (4.2)

for the final turbulent sublayer thickness and the microscale of the mid-flow, respec-
tively, in agreement with common turbulence models and the Kolmogorov estimate.

The research on spots is felt to be in an interesting and challenging state as
regards both the global and the internal properties considered theoretically above
for nonlinear spots. The strong more global nonlinearity encountered in §3c¢,d is
particularly exciting, as is that in §3 e and § 2 for the more internal flow features and
spikes. We would especially highlight the novel interaction that arises on the largest
scale (airfoil scale), as covered by (3.24)—(3.26) coupled with (3.1)—(3.7). However,
the highest amplitudes tackled so far, in §3¢,d, require concerted further study. A
related point is that markedly different flow structures might be set up sufficiently far
downstream of the initial disturbance with different scales acting as mentioned in § 1,
although there is little work in connecting these structures with an initial-value 3D
problem as here. Our stress here is towards full nonlinearity, but much other work is
desirable on linear or weakly nonlinear problems, on properties near the spot leading
edge (cf. Bowles & Smith 1995), and on compressibility effects, given Clark et al.’s
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Z

Figure 7. Theoretical spot solution from Bowles & Smith (1994) incorporating short-scale
effects, and comparison with the typical 11° spread angle found experimentally.

(1994) demonstration of experimental agreement with the Doorly & Smith (1992)
theory over a range of Mach numbers; channel flows and wall jets are considered
by Dodia (1994). While a wide variety of scales act within the 3D spot evolution
identified by theory, agreeing with the description of ‘spots within spots’, and the
overall picture looks fairly encouraging and self-consistent as a basis for continuing
study, much remains to be done.

So far, the spot theory tentatively appears to fall in line with all the experimen-
tal findings summarized in §1 in a qualitative or quantitative sense. Although, at
first, agreement with experiments seems poor for the spot-spreading rate (in plan
view), a recent study by Bowles & Smith (1995) points to important short-scaled
effects combined with those of nonlinearity above, to give a theoretical spread an-
gle (figure 7) of approximately 11°, very close to the experimental observations. On
more global features (§3), tentative agreement with experiments and computations
is demonstrated in Smith (1991a) for the initial-value problem (3.1) ff. alone, while
Bowles & Smith (1995) above suggest quantitative agreement. On the more internal
features, quantitative agreement with computations and experiments has been noted
in §2 and is shown in figures 2-5; in particular the breaking point in figure 4 signals
the onset of turbulent spots in the forced flow there, linking with the free type of
spot considered in §3. Comparisons of the integral criterion (2.13) with direct nu-
merical simulation results are currently being made (in conjunction with Dr R. I.
Bowles, Dr S. P. Fiddes and Dr N. Sandham), in addition to those with experiments
in figure 2, which we repeat are at subcritical Reynolds numbers, indicating wide
application of the theory (see Smith et al. 1984). Thus, while there is undoubtedly a
vast amount still unknown on the theoretical side, there is now a fair range of quite
supportive agreements between rational theory and its interpretations on the one
hand and experiments on the other, in deep transition.
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